网上有关“数据结构教程第二十六课的定义与术语”话题很是火热,小编也是针对数据结构教程第二十六课的定义与术语寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。
教学目的: 掌握图的定义及常用术语
教学重点: 图的常用术语
教学难点: 图的常用术语
授课内容:
一、图的定义
图是一种数据元素间为多对多关系的数据结构,加上一组基本操作构成的抽象数据类型。
ADT Graph{
数据对象V :V是具有相同特性的数据元素的集合,称为顶点集。
数据关系R:
R={VR}
VR={ |v,w(-V且P(v,w), 表示从v到w的弧,谓词P(v,w)定义了弧 的意义或信息}
基本操作P:
CreateGraph(&G,V,VR);
初始条件:V是图的顶点集,VR是图中弧的集合。
操作结果:按V和VR的定义构造图G
DestroyGraph(&G);
初始条件:图G存在
操作结果:销毁图G
LocateVex(G,u);
初始条件:图G存在,u一G中顶点有相同特征
操作结果:若G中存在顶点u, 则返回该顶点在图中位置;否则返回其它信息。
GetVex(G,v);
初始条件:图G存在,v是G中某个顶点
操作结果:返回v的值。
PutVex(&G,v,value);
初始条件:图G存在,v是G中某个顶点
操作结果:对v赋值value
FirstAdjVex(G,v);
初始条件:图G存在,v是G中某个顶点
操作结果:返回v的第一个邻接顶点。若顶点在G中没有邻接顶点,则返回“空”
NextAdjVex(G,v,w);
初始条件:图G存在,v是G中某个顶点,w是v的邻接顶点。
操作结果:返回v的(相对于w的)下一个邻接顶点。若w是v的最后一个邻接点,则返回“空”
数据结构教程第二十一课树、二叉树定义及术语
《数据结构》(C语言版)是为“数据结构”课程编写的教材,也可作为学习数据结构及其算法的C程序设计的参数教材。
本书的前半部分从抽象数据类型的角度讨论各种基本类型的数据结构及其应用;后半部分主要讨论查找和排序的各种实现方法及其综合分析比较。其内容和章节编排1992年4月出版的《数据结构》(第二版)基本一致,但在本书中更突出了抽象数据类型的概念。全书采用类C语言作为数据结构和算法的描述语言。
本书概念表述严谨,逻辑推理严密,语言精炼,用词达意,并有配套出版的《数据结构题集》(C语言版),便于教学,又便于自学。
本书后附有光盘。光盘内容可在DOS环境下运行的以类C语言描述的“数据结构算法动态模拟辅助教学软件,以及在Windows环境下运行的以类PASCAL或类C两种语言描述的“数据结构算法动态模拟辅助教学软件”。
本书可作为计算机类专业或信息类相关专业的本科或专科教材,也可供从事计算机工程与应用工作的科技工作者参考。
教学目的: 掌握树、二叉树的基本概念和术语,二叉树的性质
教学重点: 二叉树的定义、二叉树的性质
教学难点: 二叉树的性质
授课内容:
一、树的定义:
树是n(n>=0)个结点的有限集。在任意一棵非空树中:
(1)有且仅有一个特定的称为根的结点;
(2)当n>1时,其余结点可分为m(m>0)个互不相交的有限集T1,T2,...Tm,其中每一个集合本身又是一棵树,并且称为根的子树.
二、树的基本概念:
树的结点包含一个数据元素及若干指向其子树的分支。三、二叉树的定义
二叉树是另一种树型结构,它的特点是每个结点至多只有二棵子树(即二叉树中不存在度大于2的结点),并且,二叉树的子树有左右之分,其次序不能任意颠倒。
一棵深度为k且有2(k)-1个结点的二叉树称为满二叉树,如图(a),按图示给每个结点编号,如果有深度为k的,有n个结点的二叉树,当且仅当其每一个结点都与深度为k的满二叉树中编号从1至n的结点一一对应时,称之为完全二叉树。
二叉树的定义如下:
ADT BinaryTree{
数据对象D:D是具有相同特性的数据元素的集合。
数据关系R:
基本操作P:
InitBiTree(&T);
DestroyBiTree(&T);
CreateBiTree(&T,definition);
ClearBiTree(&T);
BiTreeEmpty(T);
BiTreeDepth(T);
Root(T);
Value(T,e);
Assign(T,&e,value);
Parent(T,e);
LeftChild(T,e);
RightChild(T,e);
LeftSibling(T,e);
RightSibling(T,e);
InsertChild(T,p,LR,c);
DeleteChild(T,p,LR);
PreOrderTraverse(T,visit());
InOrderTraverse(T,visit());
PostOrderTraverse(T,visit());
LevelOrderTraverse(T,Visit());
}ADT BinaryTree
三、二叉树的性质
性质1: 在二叉树的第i层上至多有2的i-1次方个结点(i>=1)。
性质2: 深度为k的二叉树至多有2的k次方减1个结点(k>=1)。
性质3: 对任何一棵二叉树T,如果其终端结点数为n0,度为2的结点数为n2,则n0=n2+1。
性质4: 具有n个结点的完全二叉树的深度为|log2n|+1
性质5: 如果对一棵有n个结点的完全二叉树的结点按层序编号,则对任一结点i(1=<i=<n)有:
(1)如果i=1,则结点i是二叉树的根,无双亲;如果i>1,则双亲PARENT(i)是结点i/2
(2)如果2i>n,则结点i无左孩子(结点i为叶子结点);否则其左孩子LCHILD(i)是结点2i
(3)如果2i+1>n,则结点i无右孩子;否则其右孩子RCHILD(i)是结点2i+1
</i=<n)有:
结点拥有的子树数称为结点的度。
度为0的结点称为叶子或终端结点。
度不为0的结点称为非终端结点或分支结点。
树的度是树内各结点的度的值。
结点的子树的根称为该结点的孩子,相应地,该结点称为孩子的双亲。
同一个双亲的孩子之间互称兄弟。
结点的祖先是从根到该结点所经分支上的所有结点。
以某结点为根的子树中的任一结点都称为该结点的子孙。
结点的层次从根开始定义起,根为第一层,根的孩子为第二层。其双亲在同一层的结点互为堂兄弟。树中结点的层次称为树的深度,或高度。
如果将树中结点的各子树看成从左至右是有次序的,则称该树为有序树,否则称为无序树。
森林是m(m>=0)棵互不相交的树的集合。
关于“数据结构教程第二十六课的定义与术语”这个话题的介绍,今天小编就给大家分享完了,如果对你有所帮助请保持对本站的关注!
本文来自作者[wzjinhao]投稿,不代表金豪号立场,如若转载,请注明出处:https://wzjinhao.cn/kpjh/202508-11675.html
评论列表(3条)
我是金豪号的签约作者“wzjinhao”
本文概览:网上有关“数据结构教程第二十六课的定义与术语”话题很是火热,小编也是针对数据结构教程第二十六课的定义与术语寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,...
文章不错《数据结构教程第二十六课的定义与术语》内容很有帮助