如何更好地学习机器学习

网上有关“如何更好地学习机器学习”话题很是火热,小编也是针对如何更好地学习机器学习寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。

如何更好地掌握机器学习

Colorado是伯克利大学的在读博士,同时也是Metacademy的创始人。Metacademy是一个优秀的开源平台,许多专业人员共同在这个平台上编写wiki文章。目前,这些文章主要围绕着机器学习和人工智能这两个主题。

在Colorado的建议中,更好地学习机器学习的方法就是不断的通过书本学习。他认为读书的目的就是让心中有书。

一个博士在读生给出这样的建议并不令人惊讶,以前本站可能还推荐过类似的建议。这个建议还可以,但我不认为适用每个人。如果你是个开发者,想实现机器学习的算法。下面列出的书籍是一个很好的参考,可以从中逐步学习。

机器学习路线图

他的关于机器学习的路线图分为5个级别,每个级别都对应一本书必须要掌握的书。这5个级别如下:

Level 0(新手):阅读《Data Smart: Using Data Science to Transform Information into Insight》。需要了解电子表格、和一些算法的高级数据流。

Level 1(学徒):阅读《Machine Learning with R》。学习在不同的情况下用R语言应用不同的机器学习算法。需要一点点基本的编程、线性代数、微积分和概率论知识。

Level 2(熟练工):阅读《Pattern Recognition and Machine Learning》。从数学角度理解机器学习算法的工作原理。理解并调试机器学习方法的输出结果,同时对机器学习的概念有更深的了解。需要有算法、较好的线性代数、一些向量积分、一些算法实现经验。

Level 3(大师):阅读《Probabilistic Graphical Models: Principles and Techniques》。深入了解一些高级主题,如凸优化、组合优化、概率论、微分几何,及其他数学知识。深入了解概率图模型,了解何时应该使用以及如何解释其输出结果。

Leval 4(宗师):随便去学吧,记得反馈社区。

Colorado针对每个级别中列出的书中章节阅读建议,并给出了建议去了解的相关顶级项目。

Colorado后来重新发布了一篇博客,其中对这个路线图做了一点修改。他移除了最后一个级别,并如下定义了新的级别:好奇者、新手、学徒、熟练工、大师。他说道,Level 0中的机器学习好奇者不应该阅读相关书籍,而是浏览观看与机器学习有关的顶级视频。

机器学习中被忽视的主题

Scott Locklin也阅读了Colorado的那篇博客,并从中受到了启发,写了一篇相应的文章,名为“机器学习中被忽视的想法”(文中有Boris Artzybasheff绘制的精美)。

Scott认为Colorado给出的建议并没有充分的介绍机器学习领域。他认为很少有书籍能做到这一点,不过他还是喜欢Peter Flach所著的《Machine Learning: The Art and Science of Algorithms that Make Sense of Data》这本书,因为书中也接触了一些隐晦的技术。

Scott列出了书本中过分忽视的内容。如下所示:

实时学习:对流数据和大数据很重要,参见Vowpal Wabbit。

强化学习:在机器人方面有过讨论,但很少在机器学习方面讨论。

“压缩”序列预测技术:压缩数据发现学习模式。参见CompLearn。

面向时间序列的技术。

一致性预测:为实时学习精确估计模型。

噪声背景下的机器学习:如NLP和CV。

特征工程:机器学习成功的关键。

无监督和半监督学习。

这个列表很好的指出了机器学习中没有注意到的领域。

最后要说明的是,我自己也有一份关于机器学习的路线图。与Colorado一样,我的路线图仅限于分类/回归类型的监督机器学习,但还在完善中,需要进一步的调查和添加所有感兴趣的主题。与前面的“读这些书就可以了”不同,这个路线图将会给出详细的步骤。

机器学习

Programming Collective Intelligence

本书以机器学习与计算统计为主题背景,专门讲述如何挖掘和分析Web上的数据和资源,如何分析用户体验、市场营销、个人品味等诸多信息,并得出有用的结论,通过复杂的算法来从Web网站获取、收集并分析用户的数据和反馈信息,以便创造新的用户价值和商业价值。

全书内容翔实,包括协作过滤技术(实现关联产品推荐功能)、集群数据分析(在大规模数据集中发掘相似的数据子集)、搜索引擎核心技术(爬虫、索引、查询引擎、PageRank算法等)、搜索海量信息并进行分析统计得出结论的优化算法、贝叶斯过滤技术(垃圾邮件过滤、文本过滤)、用决策树技术实现预测和决策建模功能、社交网络的信息匹配技术、机器学习和人工智能应用等。本书是Web开发者、架构师、应用工程师等的绝佳选择。

Machine Learning for Hackers

Machine Learning for Hackers (中文译名:机器学习-实用案例解析)通过实例讲解机器学习算法,用R实现的,可以一边学习机器学习一边学习R。这是一本实操型的书,重点放在讲怎么用R做数据挖掘,机器学习的算法更多的是通过黑箱的方式来讲,强调input,output含义,弱化机器学习算法细节。文中基本都是通过case来讲述怎么去解决问题,并且提供了原始数据供自己分析。适合两种人:

(1)有过机器学习的一些理论,缺少案例练习

(2)只需掌握怎么用通用的机器学习解决问题的人,只希望知道机器学习算法的大致思想,不想详细学习机器学习中的算法。

Machine Learning by Tom M Mitchell

《Machine Learning》展示了机器学习中核心的算法和理论,并阐明了算法的运行过程。《Machine Learning》综合了许多的研究成果,例如统计学、人工智能、哲学、信息论、生物学、认知科学、计算复杂性和控制论等,并以此来理解问题的背景、算法和其中的隐含假定。《机器学习》可作为计算机专业 本科生、研究生教材,也可作为相关领域研究人员、教师的参考书。

The Elements of Statistical Learning

《The Elements of Statistical Learning》介绍了这些领域的一些重要概念。尽管应用的是统计学方法,但强调的是概念,而不是数学。许多例子附以彩图。《The Elements of Statistical Learning》内容广泛,从有指导的学习(预测)到无指导的学习,应有尽有。包括神经网络、支持向量机、分类树和提升等主题,是同类书籍中介绍得最全面的。

计算和信息技术的飞速发展带来了医学、生物学、财经和营销等诸多领域的海量数据。理解这些数据是一种挑战,这导致了统计学领域新工具的发展,并延伸到诸如数据挖掘、机器学习和生物信息学等新领域。许多工具都具有共同的基础,但常常用不同的术语来表达。

Learning from Data

这是一门机器学习(ML)的入门课程,涵盖其基本理论、算法及应用。机器学习是大数据及金融、医药、商业及科研应用的关键技术。机器学习使得计算系统能够自动学习如何通过数据中提取的信息执行目标任务。机器学习现已成为当下最热门的研究领域之一,也是加州理工学院15个不同专业的本科生和研究生的研修课程。本课程在理论和实践中保持平衡,并涵盖了数学与启发式方法。

Pattern Recognition and Machine Learning

这本书是机器学习的神作之一,必读经典!

人工智能

Artificial Intelligence: A Modern Approach

《Artificial Intelligence: A Modern Approach》以详尽和丰富的资料,从理性智能体的角度,全面阐述了人工智能领域的核心内容,并深入介绍了各个主要的研究方向,是一本难得的综合性教材。

Artificial Intelligence for Humans

这本书阐释了基本的人工智能算法,如维度、距离度量、聚类、误差计算和线性回归等,用了丰富的案例进行阐释。需要较好的数学基础。

Paradigm of Artificial Intelligence Programming

本书介绍了出色的编程范式和基本的AI理论,是致力于人工智能领域的小伙伴的必读之作。

Artificial Intelligence: A New Synthesis

本书提出了统一人工智能理论的新的集成方法,涵盖了诸如神经网络,计算机视觉,启发式搜索,贝叶斯网络等。进阶选手必读。

The Emotion Machine: Commonsense Thinking, Artificial Intelligence and the Future of Human Mind

在这部让人脑洞大开的图书中,科技先锋马文·明斯基继续了他极具创造力的研究,给我们呈现了一个全新的不可思议的人类大脑运转模式。

Artificial Intelligence (3rd Edition)

这是一本关于人工智能的入门书。没有编程基础的人也可以很容易地理解其中的解释和概念。化繁为简,但也包含了高层次的人工智能领域的探讨。

关于“如何更好地学习机器学习”这个话题的介绍,今天小编就给大家分享完了,如果对你有所帮助请保持对本站的关注!

本文来自作者[wzjinhao]投稿,不代表金豪号立场,如若转载,请注明出处:https://wzjinhao.cn/zsfx/202507-8320.html

(17)
wzjinhao的头像wzjinhao签约作者

文章推荐

发表回复

作者才能评论

评论列表(3条)

  • wzjinhao的头像
    wzjinhao 2025年07月28日

    我是金豪号的签约作者“wzjinhao”

  • wzjinhao
    wzjinhao 2025年07月28日

    本文概览:网上有关“如何更好地学习机器学习”话题很是火热,小编也是针对如何更好地学习机器学习寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。如何更...

  • wzjinhao
    用户072801 2025年07月28日

    文章不错《如何更好地学习机器学习》内容很有帮助